BRIEF COMMUNICATION

The Crystal Structure of Neodymium Hexaaluminate

N. IYI, Z. INOUE, AND S. KIMURA

National Institute for Researches in Inorganic Materials, Namiki 1-1, Sakura-mura, Niihari-gun, Ibaraki, 305, Japan

Received January 23, 1984

While the existence of the " β -aluminatype compound" containing a trivalent rare-earth element has been recognized for elements with large ionic radii such as La, Ce³⁺, and Pr, such a phase is unknown for the elements with small ionic radii as Gd, Tb, and Yb. (1, 2) However, for elements of intermediate ionic size, e.g., Nd, Sm, and Eu³⁺, the existence of such a phase is uncertain (2).

We have conducted preliminary studies on the solidification of melts with the composition $Ln_2O_3 \cdot 11Al_2O_3$ (Ln = La, Nd, Sm, and Eu) in the FZ (floating zone) apparatus. In the solidified specimens, a " β -alumina-type" phase was detected for Ln = La, Nd, but not for Ln = Sm, Eu when using the X-ray powder diffraction method. We, presume, then, that Nd-hexAl₂O₃ (neodymium hexaaluminate) is the hexaaluminate containing the smallest rare-earth ion.

Recently, we reported La-hexAl₂O₃ (La_{0.827}Al_{11.9}O_{19.09}) (3) to have a magneto-plumbite structure with Frenkel defects of Al ions. The present study compares Nd-hexAl₂O₃ with the hexaaluminate containing the larger rare-earth ion La⁺³ by using single-crystal X-ray structure data.

Experimental and Results

Before conducting the single-crystal growth, we first explored the melting nature of Nd-hexAl₂O₃. A molten zone with composition of Nd₂O₃ · 11Al₂O₃ was formed between sintered rods in the FZ apparatus with a xenon arc lamp as the heat source (Nichiden Kikai Co.), and a boule was pulled gradually according to the SCFZ method (4). A longitudinal section of the solidified specimen was examined by electron probe microanalysis (EPMA) and revealed successive segregation of Al₂O₃, Nd-hexAl₂O₃, and eutectic lamellae composed of Nd-hexAl₂O₃ and NdAlO₃, which indicates the incongruent melting nature of Nd-hexAl₂O₃.

The single-crystal growth of Nd-hex Al₂O₃ by the FZ method was not very successful. The boule still contained small amount of Al₂O₃ and NdAlO₃ besides the single-crystal grains of Nd-hexAl₂O₃. The molar ratio of Al/Nd in the clear crystalline part (pale purple) was determined by EPMA to be 13.3 (±0.3). Several specimens from these boules were examined by Laue and precession methods. The structure belongs to the hexagonal space group

TABLE I							
Positional and Thermal Parameters	,						
2 424							

	Position	Number per unit cell	x	z	$oldsymbol{eta_{11}} imes 10^4$	$\beta_{22} \times 10^4$	$\beta_{33} \times 10^5$	$\beta_{23} \times 10^5$	В
Nd(1)	2(<i>d</i>)	1.02(5)	2/3	1/4	86(16)	β11	28(2)	0	*
Nd(2)	6(<i>h</i>)	0.63(5)	0.728(2)	1/4	47(20)	128(54)	15(4)	0	
Al (1)	12(k)	11.1(1)	0.8311(3)	0.10808(6)	30(6)	14(8)	18(2)	6(17)	
Al(2)	4 (<i>f</i>)	4	$\frac{1}{3}$	0.0268(1)	33(7)	β 11	14(3)	0	
Al(3)	4 (<i>f</i>)	4	$\frac{1}{3}$	0.1902(1)	33(8)	B 11	11(3)	0	
Al(4)	2(a)	2	0	0	37(11)	β11	13(5)	0	
Al(5)	4(<i>e</i>)	1.62(6)	0	0.2396(4)	56(24)	<i>β</i> 11	45(15)	0	
Al(6)	12(k)	0.70(7)	0.847(5)	0.185(1)		•			0.51
O(1)	12(k)	12	0.1559(6)	0.0523(2)	59(12)	60(18)	31(4)	-25(31)	
O(2)	12(k)	12	0.5046(6)	0.1507(2)	36(11)	29(16)	24(4)	-3(30)	
O(3)	4 (<i>f</i>)	4	$\frac{2}{3}$	0.0548(3)	31(15)	β 11	21(7)	0	
O(4)	4(e)	4	0	0.1488(3)	22(16)	, β11	30(9)	0	
O(5)	6(h)	6	0.1809(9)	$\frac{1}{4}$	158(23)	48(31)	31(6)	0	

^a The thermal parameters are of the form: $\exp[-(h^2\beta_{11} + k^2\beta_{22} + l^2\beta_{33} + 2kh\beta_{12} + 2hl\beta_{13} + 2kl\beta_{23})]$. $\beta_{12} = \frac{1}{2}\beta_{22}$; $\beta_{13} = \frac{1}{2}\beta_{23}$

 $P6_3/mmc$. The electron diffraction patterns showed no sign of superstructure. Using a $0.11 \times 0.07 \times 0.07$ -mm crystal, intensity data were collected on an automatic fourcircle diffractometer (Rigaku Denki Co.) using graphite monochromatized Mo $K\alpha$ radiation. The final set of 422 non-zero independent reflections below $2\theta = 115^{\circ}$ were corrected for Lorenz polarization and absorption effects. The atomic scattering factors were taken from the International Table for X-Ray Crystallography (Vol. 4). For the least-square refinement, the modified RSFLS-4 (UNICS) (5), and for Fourier synthesis RSSFR-5 (UNICS) (6) was applied. The lattice parameters were a =5.553(2) Å, c = 21.990(7) Å. The structural refinement was almost the same as that of La-hexAl₂O₃ (3). The refinement without an extinction correction met with failure. When an isotropic type I secondary extinction correction (7) was applied, the anisotropic refinement was successful, yielding $R = \Sigma ||F_0| - |F_c||/\Sigma |F_0| = 0.046$ and wR = $(\Sigma w(|F_0| - |F_c|)^2/\Sigma w|F_0|^2)^{1/2} = 0.058$, where w = 1.0. As anisotropy of corrections was

observed, the anisotropic refinement incorporating a constrained anisotropic correction (8) was accomplished to give a final R-value of 0.044 (wR = 0.047). The difference Fourier synthesis at this stage is practically featureless with a minimum of $-1.4 e \, \text{Å}^{-3}$ at (0, 0, 0.03). The other peaks or depressions are below 1.0 $e \, \text{Å}^{-3}$ in amplitude. Final parameters are given in Table I.

Discussion

The final parameters correspond to a magnetoplumbite structure as in the case of La-hexAl₂O₃. Furthermore, the interstitial Al ion as described in La-hexAl₂O₃ was also detected in difference Fourier sections at (x, 2x, z) with x = 0.83, z = 0.18, and 0.19, and was assigned as Al(6) in the refinement. In our previous paper (3), the structure of La-hexAl₂O₃ was assumed to be mainly made up of two types of half unit cell with dimension $\frac{1}{2}c$; one has a La ion and contains no defects, the other has an interstitial Al(6) migrated from Al(1), a vacancy at the Beevers-Ross site $(\frac{2}{3}, \frac{1}{3}, \frac{1}{4})$ instead of a La

TABLE II
COMPARISON OF THE OCCUPANCY

Atom	Position	Number per unit cell				
		La-hexAl ₂ O ₃	Nd-hexAl ₂ O ₃			
<i>M</i> (1)	2(<i>d</i>)	0.98(21)	1.02(5)			
M(2)	6(<i>h</i>)	0.69(21)	0.63(5)			
Al(1)	12(k)	11.0(2)	11.1(1)			
Al(5)	4(<i>e</i>)	1.70(7)	1.62(6)			
Al(6)	12(k)	0.58(8)	0.70(7)			

ion, and a defect of Al(5) at the 4e site. The former has the composition of "LaAl₁₂O₁₉," and the latter "Al₁₁O₁₉." These nonneutral half cells were supposed to cause the nonstoichiometry of La-hex Al₂O₃. As shown in Table II, the occupancy of Nd-hexAl₂O₃ is quite similar to that of La-hexAl₂O₃, which leads to the conclu-

sion that the nonstoichiometry in Nd-hex Al₂O₃ is the same as La-hexAl₂O₃.

References

- R. S. ROTH AND S. HASKO, J. Amer. Ceram. Soc. 41, 146 (1958).
- N. A. TOROPOV, V. P. BARZAKOVSKII, V. V. LAPIN, AND N. N. KURTSEVA, "Handbook of Phase Diagrams of Silicate Systems," Vol. I, 2nd ed., Jerusalem (1972).
- 3. N. IYI, Z. INOUE, S. TAKEKAWA, AND S. KIMURA, submitted for publication.
- 4. I. Shindo, J. Cryst. Growth 50, 839 (1980).
- T. SAKURAI, K. NAKATSU, H. IWASAKI, AND M. FUKUHARA, "RSFLS-4, UNICS II," The Crystallographic Society of Japan (1967).
- T. SAKURAI, "RSSFR-5, UNICS II," The Crystallographic Society of Japan (1967).
- P. J. BECKER AND P. COPPENS, Acta Crystallogr. Sect. A 30, 148 (1974).
- P. Coppens and W. C. Hamilton, Acta Crystallogr. Sect. A 26, 71 (1970).